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SECTION 1

INTRODUCTION

The dynamics of a helicopter blade in forward flight are usually

described by a system of differential equations with periodic coefficients.

A growing acceptance of hingeless helicopter blades for conventional

helicopters flying at relatively high forward flight speeds has intensified

the need for fundamental research on the aeroelastic stability of such

systems.

Studies dealing with the effect of forward flight (or periodic

coefficients) have been primarily devoted to the study of flapping insta-

bility at high advance ratios (Refs. 1 through 8). A limited number of

studies dealing with the effect of periodic coefficients on coupled flap-

lag (Refs. 9 and 10) or coupled flap-lag-pitch (Ref. 11) motion were also

conducted. The case of coupled flap-lag motion has been, somewhat incon-

clusively, investigated by Hall (Ref. 10) using multivariable Floquet

theory. The same problem was also considered by Friedmann and Tong (Ref. 9)

but the treatment was limited to low advance ratios (p < 0.3). Coupled,

linearized, flap-lag-torsion motion has been investigated by Crimi

(Ref. 11) using a modified Hill method. In both cases (Refs. 10 and 11)

only a limited number of numerical results were obtained and the physical

mechanism of the aeroelastic instabilities has not been clearly identified.

In particular, the degree of freedom which is responsible for the instability

was not identified and the results for forward flight were not compared

with those for hover.
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Recent investigation of the aeroelastic stability of hingeless blades

in hover (Ref. 12) indicated that the aeroelastic stability boundaries are

quite sensitive to the number of degrees of freedom employed in the analy-

sis. Therefore it is important to determine how the flapping behavior of

a blade at high advance ratios is modified by the inclusion of the lag

degree of freedom. This important problem, which has not received adequate

treatment before, is one of the main topics of the present study.

The mathematical methods used in previous studies dealing with the

effects of forward flight were:

(a) The rectangular ripple method (Ref. 1)

(b) Analog computer simulation (Refs. 3 and 4)

(c) Various variations of Hill's method (Refs. 2 and 11)

(d) Multivariable Floquet-Liapunov theory (Refs. 6, 7 and 10)

(e) Perturbation method in multiple time scales (Refs. 8 and 9)

The mathematical method employed in the present study is the Floquet-

Liapunov theorem, and the transition matrix is evaluated by two separate

methods:

1. Direct numerical integration using a fourth order Runge-

Kutta method

2. A new and computationally efficient method developed by Hsu

(Refs. 23 through 25) which is a multivariable extension of the

rectangular ripple method.

It is also shown that careful use of these methods enables one to circum-

vent problems associated with identifying the results encountered in

previous studies (Ref. 10).

In addition, a new and convenient approximation for the reversed flow

region is developed. This approximation is believed to be adequate for

2



most blade stability analyses. Finally, the effects of various important

parameters such as collective pitch setting, structural damping, droop and

precone on the stability associated with forward flight are investigated.
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SECTION 2

THE EQUATIONS OF MOTION

2.1 Basic Assumptions

The geometry of the problem is shown in Fig. 1. The following basic

assumptions were used in deriving the equations of motion: (a) The blade

is cantilevered at the rotor hub. It can have an angle of droop D at the

root. In addition, the feathering axis can be preconed by an angle Bp.

The angles SD and Bp are small. (b) The blade is torsionally rigid and can

bend in two directions normal to the elastic axis. (c) The deflections of

the blade are moderately small so that terms of 0(eD2) can be neglected com-

pared to one. (d) Moderately large deflections have only a small effect on

the tension due to elastic effects since one of its ends is free, therefore

a linear treatment of the elastic restoring forces is adequate. (e) A two-

dimensional aerodynamic strip theory is used with C(k) = 1 and apparent mass

effects are neglected.. (f) Stall and compressibility effects are neglected.

(g) Reversed flow is included using an approximate model for reversed flow

described in Appendix D% (h) A single blade analysis is performed, where the

blade is attached to an aircraft with infinite mass.

In deriving the equations of motion, an x, y, x coordinate system

(Fig. 1) rotating with the shaft of the helicopter and attached to the

blade is used.

2.2 Derivation of the Equations of Motion

The equations of dynamic equilibrium of a blade undergoing only

bending in flap and .lag can be taken from Friedmann (Ref. 13):

PRECEDING PACE BLANK NOT FILMED
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(E)y cos
2  + (EI) sin 2  w-x2  x 2

o 0

2

+ (EI) - (El) sin 0 cos e
L z yl] o * 2

o

- TeA sin 0 T(x) = Pzaxo x 0 I'z (2.1)
o o

aX [(EI)z -(EI) sin 0 cos e +

O

22

+[(EI) sin2 0 + (El) Gos 2 ]  xe

- TeA cos E - T(x ) y

where P and P include the aerodynamic and inertia loads distributedy z

along the span of the rotor blade.

Denoting the elastic coupling effect by Ecl and Ec2as defined in

Appendix E, Eqs. (E.3) and (E.4), and assuming that eA = 0, Eqs. (2.1)

can be rewritten as

(EI) + e + E T(x ) - Pz (2.2)
ax y 2 C2 ax 2  ax 0o - z

o o 0

a2  2 2

to and including second order terms in displacements can be written as

(Reference 13)
P = -2- = -M (xc + e +5 - 2 (2.4)

x x ox o

0

P = L -m 2 v- (v) + 2u] - g e (25)

6



Pz = Lz -m Q w gSF Q We (2.6)

where terms marked by / are smallt and have been neglected. The last

terms in Eqs. (2.5 and 2.6) represent viscous type structural damping.

The boundary conditions for a cantilevered helicopter rotor blade

are

2 3
S( ) (o, t) a We (, t) 3w (l,t)

we (o,t) = x ex2  x3 = (2.7)
eo ax 2 axo o

2 3
Sav (o,t) v (l,t) a V (l,t)

eo 1x ax3
o 0

The total displacements in the x,y,z directions are given by

(Ref. 13)tt

u=-w p dP D 2 fo e ) ei dx1 (2.8)
- 2 (xP + ED 2x 1

v = ve - Xo D (2.9)

w = W + x (p + 8D) (2.10)

where the last term in Eq. (2.8) represents the shortening effect due to

bending under the assumption of an inextensible blade.

Applying Galerkin's method on the equations of motion, the spatial

variable is eliminated. This is achieved by representing the elastic part

of the displacements v and w by a sum of normal modes in flap and lag

respectively.

S= -C ym(x o) h(t) = - 'm hm (2.11)

m

with assumption C p.4
ttwith sin 6 = 8

7



We k (Xo) gk (t) = 9 nk gk (2.12)

k

where it is understood that in the present study repeated indices imply

summation, unless otherwise stated. Using Eqs. (2.11) and (2.12) the dis-

placement field can be rewritten as

xR

u = -1 n k (k~P k ) + 2

S22 ,
o k g)2 + (m h dx1  (2.13)

v = -y m - DXo 6  (2.14)

w = k x0 (Op + aD) + k nk gk (2.15)

Next Eqs. (2.13) through (2.15) are substituted into the combination of

Equations (2.2) through (2.6). The resulting flap equation is multiplied

by 5 i dxo while the lag equation is multiplied by 2 Yi dx and the equa-

tions of motion are integrated over the domain 0 < x < 1. In this process

the integrals associated with the elastic properties of the blade are

integrated between 0 < xo < £, while those associated with the aerodynamic

loads are integrated between A < x <-B. Thus the equations in their0

final nondimensionalized form can be written as

- * * - -2 --s
Mi gi + 2 MFi Mi "SF. gi + MFi Fi i =  E ik + 2Pikm h gk

-1 -3 * cs
- B i(P+D) + 2( P+YB im hm + Eim hm + A

i = 1, 2, ... M (2.16)

8



- ** - - * - -2 s cs
MLi hi + 2 WLi MLi SLi hi + MLi Li hi = Eim hm + Eik gk

+ 2S - 2 M hr - 2 M) g + 6  - B

-8 * -11 - *
+ 2Bim hm + Bi - 2 (Sp+D)Bik gk + ALi

i = 1, 2, ... N (2.17)

where there is no summation over i on the left hand side of Equations

(2.16) and (2.17).

In deriving Equations (2.16) and (2.17), the orthogonality relations

for rotating beams given in Appendix A and the boundary conditions were

used. The various coefficients used in the equations are generalized

masses and are defined in Appendix B. The terms AFi and ALi are general-

ised aerodynamic coefficients given by the expressions

B

A =-L f L z ni dx (2.18)
Fi 2 1 0

bA

AL L Y dx (2.19)
i 2 Y

b A

Next the aerodynamic terms will be specified. The loading terms in

the z-direction and the y-direction can be obtained from Friedmann

(Ref. 13).

Lz = aPAbRUT (UTO - Up) (2.20)

CD 2
L = -apAbR p(UT - Up) + - U C2.21)

The term S - M is usually zero.

9



where the velocities Up and UT are given by

Up = w + QR X + P cos P -o (2.22)

UT = Qv + R x + p sin $ + p cos V x (2.23)

The last term in Eq. (2.23) represents the component of tangential

velocity due to radial flow along an elastically deformed blade. This

term has been sometimes neglected even though it is not a higher order

term. The additional terms due to this effect will be underlined by

for future reference.

For the purposes of this study, the inflow ratio X in Eq. (2.22) was

evaluated using an expression for constant inflow ratio in hover, given

by (Ref. 13)

= [ +--a 1 (2.24)

This inflow relation is equivalent to taking the induced velocity

at 3/4 blade radius as representative of a constant induced velocity over

the whole disk. It is clear that for forward flight one should use the

expression

X = p tan R + CT/2 2 + 2 (2.25)

However, use of this expression would have required the use of a trim pro-

cedure by which 6 is changed as a function of P. This approach was used

in Ref. 13, where it was concluded that the changes dictated by such a

trim procedure have the tendency to mask the effects due to forward flight.

Therefore, in order to illustrate clearly the effects of forward flight,

it was decided that the use of Eq. (2.24) was more convenient.

10



By subs'tituting Eqs. (2.13) through (2.15), (2.22) and (2.23) into

Eqs. (2.20) and (2.21), the expressions for L and L can be obtained.
z y

Carrying out the integrations in Eqs. (2.18) and (2.19) yields the general-

ized aerodynamic loads AFi and AL. The complete expressions for AFi and

ALi are given in Appendix C. The various flap coefficients F ... ,F 2 4 and

lag coefficients L ,...,L 2 4 for the aerodynamic loads are defined in

Appendix B.

2.3 Linearization of the Equations

The equations of motion will be linearized about a convenient equilib-

rium position which is chosen as the static equilibrium position in hover.t

The equations cannot be linearized about a forward flight condition having

a particular value of *i since there is no guarantee that such an equilibrium

position exists as a point of stable equilibrium.

The linearization is performed by writing

w = Aw+Aw = ng +nAg (2.26)
e e e k k k k

v = v= ymho + y Ahm]

e  e e  mm ma

where the o superscript denotes the static equilibrium position.

From Eqs. (2.16), (2.17), (2.26) and Eqs. (C.3) and (C.4) in

Appendix C

- -2 o s o cs o  --
MFi Fi gi + Ek gk im m =  - OP +  D)

+ 2Fi -i i = 1,2, ....M (2.27)

- -2 o s  o -s o -10 -11
Li. lh - Ei h - E g - B + B 

iML i im m ik k 1 D i D

+ 1 A 2 L 4 CDo + L1 8- L2 2

2 R I a i i

i = 1,2, ....M (2.28)

No summation over i on the left hand side of Eqs. (2.27) and (2.28).

For every case stability of the equilibrium condition in hover is

automatically checked.
11



Considering the case of one elastic mode for each degree of freedom

and dropping the subscripts on the flap and lag coefficients, we have

-- 2 o - ECS o -
F1 1 +  h - B ( +  D

+ 2 Fle - F2AJ (2.29)

--2 0 ES o -10 -11
1(1 -h gl = - B1  D 8 + B1 BD

+ 12 L( 4 CDo + L110 - L2 2 (2.30)

Eqs. (2.29) and (2.30) can be solved for the static equilibrium position

= I S C

where

FS (2.32)

-cs- -2 E s

L- E s  ML L1 -

- B + )2 (Fl - F2)

1 ) D 2 R Do l 2

Using the order of magnitude analysis in Appendix C, only generalized

aerodynamic terms up to and including second order terms are retained in

the flap equation. Thus Eqs. (2.16), (2.31) and Eq. (C.3) in Appendix C

become

12



F 1 + F1SF1 + F si[8 - F cos9 P4 ho JAl

+ MF1 + 2 F6J cosi + F7  sin 2

2 1F
2 2 1+cos 2)h l Ag - 2P1 1  g o-2( P+ D)B1 + 2Y [102

+ FI Fsinl - F F cos(Bp+SD) - FI F 14J cos g Ah,

+ -Ecs F212 cos 0-F22i cos + F 26 sin 24'
2 R 2

+ F 2 sin - Fc cos (+) + F (1 - cos 2 ) o Ah

-Ec 2.2 1 2112 O-_ 22 1

+ - F2l 2 cos0 + F22 cos - F22 2 sin 24 (2.34)

+ F22 - Du)(1 + cos 20 h + F23 (1 + cos 24) g h2 PD 1 lJ

From the order of magnitude analysis in Appendix C, only generalized

aerodynamic terms up to and including third order terms are kept in the lag

equation. Therefore, from Eqs. (2.17), (2.31) and Eq. (C.4) in Appendix C,

one has

ML1 AI 1 + I2ML 1n SL + hi -2S 1 1 1  2 111 - 2 FD0 8B

2i L1~[93p cos4(S+6D + L1 3 2s CDo + 14 2 CDo2 Ra Ra

+ L1 3 X 2 16 I g o - Es +Y R :2. cos20o

3R 0+ L 16 cos R 1 2 L co

13



+ L 0  (P+$D)(l + cos 20) + L20 2 C D  sin 2 + L 3 2 cos D

2 a
- - -- - - -s - - o - - --- - - 1 - - 2 + - 1 -L-

SL psin@8 + L82p cos((Sp+6n ) + L82 + L2 cos@ go

-------------------------------------

+ L22 p cosge ho Ag + - ECs _ [ L10j cos0

11  11 2 \R11

L i- sin 20 + L 11 (P+BD) (1 + cos 2 ) + LI I 2X cos

+ L24 1 + cos 2)g + L21 2 (1 + cos 2)h Ag

2 - L2  P +D (l+cos 2) + L 2 2 C (1-cos 2) + 1 D)

- L2 1p(+n) cos1 +L12p CDo + L2 Xl sin +FL2 2 (P +R )sin 27L a J L 2 P D

+ L10 p cos +11 Ll P- sin 2e - L11 2 (p +D)(l+cos 21)-L 112Xw cosj go

+ L20 cos L2 0  +cos 2 20 2Do sin 2L_- - -- - 2 (-p+ n)(l+cOs 2) - L -- sin 2

23 Co o 24 2 2-L 2a cosJ a j1 + - (1+cos 2*) gl

+ - L21- (1+cos 29)0 g h (2.35)

The third order terms in the lag equation are underlined by for

future reference. Also, the radial flow terms are underscored with

Eqs. (2.34) and (2.35) are a system of coupled linear periodic equations

under the influence of periodic forcing. The periodicity in the coefficients
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and the forcing are due to the effects of forward flight. The equations are

coupled through the aerodynamic, inertia and stiffness terms.

Furthermore, for mathematical convenience the equations of motion

have to be transformed into a system of first order equations. This is

achieved by making the following substitutions.

Agl 1  Y1

gl = Y2  (2.36)

Ahl Y3

Ah
1h = Y4

Thus, the equations of motion in their final form can be written as

y = A () y + f () (2.37)

Where A is a 4 x 4 matrix and f is a column matrix. The elements

of both are defined in Appendix C.

The equations of motion (2.37) will have a different form for the

normal and reversed flow regions. The representation of the reversed

flow together with its effect on the form of Equation (2.37) is described

in Appendix D.
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SECTION 3

MATHEMATICAL METHODS FOR DETERMINING
THE STABILITY OF

LINEAR PERIODIC SYSTEMS

3.1 Introduction

This section will consist of a brief summary of the methods available

for obtaining the solutions of homogeneous systems of linear differential

equations with periodic coefficients. In general such a system is governed

by the following set of equations

= A( ) y (3.1)

Where y is the state variable column matrix and A(p) is an n x n

periodic matrix whose elements have a common period denoted by T, thus

A(+T) = A( ) (3.2)

The problem of determining the stability of such a system has been

considered in the literature associated with various fields:

(a) mathematics (Refs. 14-16)

(b) linear control system theory (Refs. 18-20)

(c) dynamic stability or parametric excitation problems (Refs.

21-25)

(d) structural dynamics problems related to helicopter rotor blade

dynamics (Refs. 1, 5, 6, 10, 26-29)

Unfortunately, there seems to be a considerable lack of communication

between researchers working in these areas, which led to a considerable

amount of overlap and duplication of efforts. Therefore it is believed

that the various references mentioned above could be useful to other

researchers dealing with similar problems. It should be mentioned that

the list given above is far from complete and a complete review of the
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bibliography dealing with equations with periodic coefficients is beyond

the scope of the present study. From these references it is evident that

in the past the following methods have been used:

(a) ill' method of infinite determinants (Refs. 21, 26 and 11)

(b) Multivariable Floquet-Liapunov theory (Refs. 5, 6, 10, 18-20,

23-25, 28)

(c) Perturbation Methods (Refs. 8, 13, 21, 22)

The first method has proved to be cumbersome and numerically ineffi-

cient. The second method is the most general one, its main drawback has

been the computational effort required for evaluating the transition ma-

trix. This can be overcome by using Hsu's method. The third method is

limited to cases when the parametric excitation can be expressed in terms

of some small parameter which tends to limit the generality of the method.

3.2 Multivariable Floquet-Liapunov Theory

3.2.1 The Transition Matrix and Its Properties

The solutions of a system of differential equations with periodic

coefficients are closely associated with the concept of the state transi-

tion matrix, therefore it is important to start by defining this matrix.

The transition matrix, or the fundamental matrix, is a matrix whose

columns contain the linearly independent solutions to Equations (3.1). Thus

the transition matrix in general is written as

o( ,, : [ u I(,, .... , n(M, o (3.3)

where each of the columns in equations (3.3) satisfies Equation (3.1)

with the initial conditions given by

18



1 j = k

Y (o) ( (3.4)
o j 0 k

to yield 0k(,0)o) . Thus clearly

( 0 , 'o ) = I (3.5)

Two important properties of the transition matrix are given below

(Ref. 18)

det 0(,o) = exp trace A(o)dcj (3.6)

o  1 91 ) (3.7)

3.2.2 The Floquet-Liapunov Theorem and Its Consequences

Proof of the Floquet-Liapunov theorem is given in References 15 and

18, for conciseness only the theorem itself will be stated.

Floquet-Liapunov Theorem. If A('+T) = A(i) then the transition

matrix associated with Equation (3.1) can be written as

( o  -1 ()eR(-0 ) P( o )  (3.8)

where

P(W+T) = P() (3.9)

and R is a constant matrix.

It can be shown that in general (Refs. 15 and 18)

RT
e- = C = O(T,O) (3.10)

where C is also a constant matrix. Furthermore P() is given by

-1-RP-1) = (,O)e - R  (3.11)

The most important consequences of this theorem are

(a) Knowledge of the transition matrix over the period
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O 4 5 T determines the solution to Equation (3.1) everywhere

because from Equations (3.7) and (3.10)

( +T,0) = Q(I,0)eRT (3.12)

and in general

/ RT
c(4+sT,0) = 0(4,0) e / (3.13)

where s is any integer and 0 : 5 S T.

Therefore using Equation (3.11) P() is determined everywhere.

(b) Knowledge of the transition matrix at the end of the period determines

the stability of the system. From Equation (3.10) the transition

matrix at 4 = T clearly determines both C and R. Here two cases need

to be considered.

Case (1) The matrix C had n-independent eigenvectors associated with

n-distinct eigenvalues. For this case this also means that R has

n-independent eigenvectors, therefore from elementary linear algebra a

similarity transformation can be found such that

Q-1 R Q = A (3.14)

where the columns of Q are the n-linearly independent eigenvectors of R and

A is a diagonal matrix whose elements are the eigenvalues of R. Combining

equations (3.10) and (3.14) and using the definition of the matrix exponen-

tial (Ref. 15) one has

RT XT -1eT = Qe~r Q = C

or

AT -1 -1
e~ = A = Q C Q = Q 0 (T,0)Q (3.15)

where A is a diagonal matrix containing the eigenvalues of the transition

matrix at the end of one period. The eigenvalues of 0 (T,O0) or the charac-
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teristic multipliers are related to the eigenvalues of R, denoted char-

acteristic exponents, through the relation

XkT

e k  k = , 2, ... n (3.16)

Clearly Ak and Ak are both complex quantities in general, thus

Ak = k+i k (3.17)

A= A kR+iAkI

from which

S 2 in A+ A 1] (3.18)
k 2T

1 -1 AkI
k =  tan - (3.19)

the quantity W k can be determined according to the Floquet-Liapunov

theory only within an integer multiple of the nondimensional period.

The stability criteria for the system is related to the eigenvalues

of R or the real part of the characteristic exponents C . The solutions
k

of the Equation (3.1) approach zero as -P~M if

2 2
AkR + AkI < 1 or k < 0 k = 1, 2, ... , n (3.20)

Case (2) The eigenvalues are not distinct anymore. In this case instead

of finding a similarity transformation which transforms R into diagonal

form, a similarity transformation can be used which transforms R into the

Jordan canonical form, this case is treated in Reference 15.

3.3 Methods for Calculating the Transition Matrix

3.3.1 General

From the description given in the previous sections it is clear that

in order to obtain the solutions for a periodic system using the Floquet-

Liapunov theorem one has to evaluate the transition matrix over one period.
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This can be done using the methods described in the following sections.

3.3.2 Direct Numerical Integration

This straightforward method, which has been used in Refs. 6 and 28

is based upon equations (3.3) and (3.4). The various columns of the

transition matrix are evaluated by direct numerical integration of the

equations of motion, Equations (3.1), using a fourth order Runge-Kutta

method, with the initial conditions specified by Equations (3.4).

3.3.3 Hsu's Method for Evaluating the Transition Matrix

In a recent series of papers, Hsu (Refs. 23-25) has developed various

methods for approximating the transition matrix during one period; the

most efficient one consists of approximating the periodic matrix A() by

a series of step functions, this method can be considered to be the gen-

eralization of the "rectangular ripple" (Ref. 1) method to multi-

dimensional systems. The method consists of evaluating the state transi-

tion matrix by dividing a period into a number of equal parts and con-

sidering the equations over each interval to be a set of constant coef-

ficient equations. Due to the fact that the method is new and numer-

ically efficient a description of its essential aspects is given below.

Each period T is divided into K intervals denoted by

k k = 0, i, 2.... K, with 0 = 0 <  I < .... K = T.

th
The k-- interval [ k-l' k] is denoted by Tk and its size by

A th
k = k - k-l* In the k- interval the periodic coefficient matrix

A( ) is replaced by a constant matrix Ck which is defined by

Ck = A(k )  k C Tk (3.21)

Ck l A(r) dr
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Thus the actual system, Eq. (3.1), is approximated by an approximate system

x(p,k) = C(p;k) x(P;k) (3.22)

where

x(O;k) = C

and

oo k
C(;k)= -- Ck[U( -sT-9k-l)-U( -sT-9k)] (3.23)

m=-- k=l

The elementary theory of differential equations with constant coef-

ficients enables one to write the fundamental matrix (or the transition

matrix) of the system with OA(O,k) = I as

A(*,K) = exp [( -K-l)CK exp(CKl K-1) ... exp(C1 1) (3.24)

and the growth matrix, or approximate transition matrix at I = T is given by

K
H(K) = exp(AKCK) exp(AK-_CK-l) ... exp(A1 C1) = I exp(A Ci) (3.25)

i=l

With regard to the product sign, it is understood that the order of

positioning of the factors is material and that the k-th factor is to be

placed in front of the (k-l)-- factor.

It is shown in Reference 25 that when K - co

x(4,K) + y(4)

A (,K) (,o)

and

H(K) = ! (T,o) --+ (T,o)

The basic numerical problem is therefore the efficient computation of

H(K).

Using the definition of the matrix exponential

(A.ci ) 2  (Ai C ) n
~ . . ~(3.26)exp(A.C) = I + A + + (3.26)

~i i~ 2 n!

n 0
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For small time intervals Ai - o and the series in Equation (3.26)

converges rapidly, and the value of the matrix exponential_can be accu- .

rately approximated by a finite number of terms. Thus

(Ai C)J (A (aii) (3.27)
exp(ACi + = exp(A C) - (3.27)

j=1 j=J+1 '

Therefore the approximate value of the growth matrix can be written as

K -J (A Ci)
HA(K) = I + E (3.28)

A i=l j =1 J

General error bounds for these approximations are obtained in Ref. 25,

furthermore it can be shown that

D(T,o) - H A(K) = O (A2) (3.29)

for J > 2.
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SECTION 4

RESULTS AND DISCUSSION

4.1 Numerical Quantities Used in the Calculations

In computing the numerical results the following assumptions were

made:

Mass and stiffness distribution was assumed to be constant along

the span of the blade.

Two different kinds of mode shapes were used:

(a) For the cases when essentially only a study of the trends or

properties of the numerical methods (i.e. numerical experimenta-

tion) was conducted, the mode shapes in flap and lag were both

approximated by the first nonrotating assumed mode shape (Ref. 13)

1 - 4
nl = Y= (- -) [1-4x - (1-x) ] (4.1)

This equation satisfies all the boundary conditions of the

problem. When an assumed mode shape is used the elastic coupling

effect as represented by Equations (E.5) through (E.8) was neglected.

(b) For the majority of the cases, where a parametric investigation

of typical hingeless rotor blade configurations was conducted, an

exact rotating mode shape in flap and lag was employed. The exact

rotating mode shapes were generated by using Galerkin's method

based upon five nonrotating cantilever mode shapes for each flap or

lag degree of freedom. For these cases the elastic coupling effect

was included. The method by which the rotating modes were obtained

is essentially identical to that described in Reference 31 and the

various numerical constants required were taken from Reference 32.
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The flap and lag coefficients Fi, Li and the various generalized

masses defined in Appendix B were calculated using seven-point Gaussian

integration. The numerical values for these coefficients were calculated

for R/R = 1.0, A = 0.0, B = 1.0 and e l = 0.

As mentioned before, the inflow was evaluated using Eq. (2.24). It

has been shown in Reference 13 that the correct procedure would involve a

trim requirement for which 0 must be changed as a function of p at a

fixed value of CT . This added complication was not considered to be worth-

while in the present trend type study.

Finally, in all the computations the following values were used:

Cdo = .01; a = 2w; a = 0.05

Various other pertinent quantities are specified on the plots.

4.2 Brief Description of the Computer Program

This section describes briefly the computational implementation of

the mathematical techniques described in Section 3. As pointed out in

Section 3, the method of solution is based upon the Floquet-Liapunov

theorem, but the transition matrix at the end of a period is evaluated

using two different approaches: (a) Direct numerical integration,

(b) Hsu's method of approximating a periodic system by a series of

step functions. Consequently, the two computer programs by which the

results were obtained are identical except for the routine which evaluates

the transition matrix.

The computational steps are outlined below:

1. The generalized masses, and generalized aerodynamic coefficients

i i
F , L are evaluated using seven point Guassian integration. In

the calculation of the aerodynamic coefficients the normal and
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reversed flow region are accounted for as described in

Appendix D.

2. The transition matrix at the end of one period is computed using

two separate methods

(a) Direct Numerical Integration. For this case the elements

of the A-matrix are generated and the resulting equations are

integrated using the fourth order Runge-Kutta method available

in the IBM-Scientific Subroutine Package. The numerical inte-

gration is performed four times yielding the four columns of

the transition matrix. The time steps used were the same as

those used for Hsu's method.

(b) Hsu's Method. The transition matrix is evaluated using Equa-

tion (3.28). After some numerical experimentation it was found

that A = T/50 gives good accuracy. The periodic part in the

elements of the A-matrix (Appendix C) were evaluated using

Equation (3.21) which yields

k- k sin P d 2 = sin g sin (4.2)

1 k1
k fk-1 k cos iP d ' = cos kavg A sin () (4.3)
kk-1

kk1 f sin 2 P d ' = sin (2kav sin A' (4.4)

ki l cos 2 d = cos 2ka sin A (4.5)

k-1

k + 'k-1
where 'kavg =  2 ; k - k-l
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It is apparent from these equations that for small intervals

the periodic terms could be replaced by their value at the

mid-point of the interval.

3. The eigenvalues of the transition matrix at the end of a period

are evaluated using a Jacobi-type eigenvalue routine. The charac-

teristic exponents are then evaluated from Equations (3.18) and

(3.19). Of the four characteristic exponents obtained, two are

associated with the flap degree of freedom, and two are related to the

lead-lag degree of freedom. The critical advance ratio pc is the

advance ratio for which one of k' becomes positive. The degrees

of freedom are identified by tracing back their history from p = 0.

4.3 Results

The results obtained from the present study are usually given in

the form of plots representing the variation of the real part of the

characteristic exponent Ck with the advance ratio p.

Before proceeding with the description of the results it is important

to note that Figures 3 through 8 are based upon the assumed mode shapes

Eq. (4.1), and in these cases the elastic coupling effect is neglected.

Figures 10 through 17 have been obtained using the exact rotating mode

shapes and in these cases the elastic coupling effect is included.

Figure 3 shows results for a typical case using Runge-Kutta numer-

ical integration and Hsu's method with different orders of approximation

used in calculating the state transition matrix. This plot shows that

Runge-Kutta and Hsu's method using a fourth order approximation to the

solution of the constant coefficient equations in each interval give
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almost identical results. As shown, the lag degree of freedom becomes

unstable for p = .754 and the frequency of oscillation is wk = 1.286.

This result clearly indicates that by neglecting the lag degree of

freedom one could obtain completely incorrect stability boundaries.

Figure 4 is a plot of the C.P.U. time required on an IBM 360/91

computer to calculate the Floquet transition matrices for the four cases

depicted in Fig. 3. As shown on the figure, Hsu's method, even using a

fourth order approximation, is computationally much more efficient than

the fourth order Runge-Kutta numerical integration scheme.

Figure 5 is a comparison of results between fourth order Runge-

Kutta and Hsu's method for a case that has a relatively high value of Pc.

Again the results compare favorably even for high values of p.

In the derivation of the equations of motion, some new terms due to

the effect of radial flow were included.*

Figures 6 and 7 show the effects of the radial flow terms on the

stability of the system. The effect of neglecting the radial flow terms

on the real part of the characteristic exponent associated with the flap

degree of freedom is illustrated in Fig. 6. Note that the radial flow

terms have a stabilizing effect on the flapping motion; with the radial

flow terms suppressed, the flap degree of freedom becomes unstable

at P = 1.33. The effect of the radial flow terms on the lead-lag degree

of freedom is illustrated by Fig. 7; as shown, without the radial flow

terms the instability is completely eliminated and the system becomes

unstable in flap. When the radial flow terms are included, the lag degree

of freedom is the critical one and the system becomes unstable at P = .754.

*The radial flow terms in this discussion are those due to the under-
lined term in Eq. (2.23).
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This matter was pursued further to determine which radial flow term was

causing the instability in the lead-lag degree of freedom. The actual

destabilizing term in the equations of motion was found to be an aerody-

namic coupling term. This term couples the flap motion with the lag

motion in the flap equation. Its form is

2 2 aw av
p cos 2 a(4.6)ax @x

o O

this term is due to the U TUP term in Equation (2.21). The term shown

above is the complete nonlinear one, clearly the one retained in the

equations of motion is the coupling term obtained from linearizing this

expression.

It has been pointed out by Dr. K.H. Hohenemser, at a recent meeting,*

that this term could be transformed into a constant coefficient term, if the

equations of motion are rewritten in a nonrotating coordinate system such as

multiblade coordinates.

As outlined in Appendix C, the 0(cD) aerodynamic terms associated

with the lag equation were retained in the derivation. Fig. 8 shows the

effect of these third order terms on the real part of the characteristic

exponent associated with the lag degree of freedom plotted as a function

of the advance ratio p. Clearly the third order terms associated with

damping are the relatively important ones. The third order terms asso-

ciated with damping in the lag equations are underlined by in

element A33 of A, Appendix C.

Figure 9 is given for convenience. It yields the relation between

the first rotating and nonrotating nondimensional flap and lag frequen-

cies, respectively.

AHS/NASA-Ames Specialists Meeting on Rotorcraft Dynamics, Moffett Field,

Calif., Feb. 13-15, 1974.
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As mentioned, the results presented in Figs. 3 through 8 were

obtained by using the assumed mode shape and neglecting the elastic

coupling effect. In order to assess the effect of this assumption the typical

case has also been recomputed with the exact rotating mode shape and the

elastic oupling effect, the results are shown in Figure 10. From Fig. 10 it

is clear that use of the exact rotating mode in flap and lag reduced the

value of Pc to Pc = .653, when the elastic coupling is also included uc is

further reduced to Pc = .583. Thus, for this case, Pe seems to be more

sensitive to the type of mode shape used than to the inclusion of the elastic

coupling effect. It is also interesting to note, that for this case the

elastic coupling effect is destabilizing, while for hover its effect on 80 is

quite stabilizing. (Ref. 30)

It should be noted that all the results starting from Fig. 10 are

based upon the exact rotating mode shapes and the elastic coupling effect

is always included.

The importance of the reversed flow region is illustrated by Fig. 11.

As shown, with the reversed flow region the instability occurs at a higher

value of p than without the reversed flow region. Similar trends were

observed in previous studies when only the flapping motion was considered

(Ref. 5), indicating that by neglecting the reversed flow region one could

expect conservative results from a stability point of view. It also

indicates that for this particular case the effects of reversed flow are

negligible for P < 0.6 and start being important for p > 0.8.

It is also clear from Fig. 11 that the difference in pe due to

inclusion of the reversed flow region, for p = 1.0, is approximately 7%.

Thus, the approximate representation of the reversed flow region, described

in Appendix D, cannot significantly affect the accuracy of the results

presented in this study.
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Previous studies (Ref. 12) dealing with the effect of viscous type

of structural damping on the stability boundaries-for hover indicated

that this parameter has an important stabilizing effect. The effect of

this parameter for forward flight is shown in Fig. 12. The stabilizing

effect of structural damping in the lag degree of freedom is evident

from Fig. 12 where the value of ic, at which the characteristic exponent

associated with the lag degree of freedom becomes positive, is plotted

as a function of the viscous type of structural damping in lag. It is

interesting to note that this plot indicates that the greatest stabilizing

effect due to damping is obtained in the range 0 < nSL < .02 (2% of

critical damping), after which the gain in stability tends to level off.

Similar trends were also obtained from stability studies in hover.

Again in order to illustrate the sensitivity of the results to the

mode shape used and the elastic coupling effect three sets of results

are presented. As seen the results are mode shape dependent and inclusion

of the elastic coupling effect tends to reduce the value of Pc, at which

the instability occurs.

The effect of collective pitch setting on blade stability is illus-

trated by Fig. 13 for the typical case Fl = 1.175 and wL1 = 1.28303. As

shown for a low value of collective pitch setting 6 = 0.05 the lag degree

of freedom becomes unstable at ec = 1.435 and wk = 1.279. For a high

value of collective pitch setting 8 = .30 the lag degree of freedom becomes

unstable at ye = .535 with a frequency of k = 1.332. Similar results

have been obtained for a variety of other cases, the results are not

given here for the sake of conciseness. These results consistently

indicate that there is a degradation in stability in forward flight with

the increase in collective pitch setting. These results also indicate
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that the use of a trim procedure, such as developed in Reference 13,

should be required in realistic stability calculations in forward flight.

Furthermore, it seems that the assumption of nonlifting rotors used in

some forward flight studies (Ref. 7) can be nonconservative.

Figure 14 illustrates the effect of the Lock number, based on normal

flow, on the stability of the blade in forward flight. As shown, an

increase in the value of y tends to destabilize the blade in the lag

degree of freedom. For y = 5.0 the lag degree of freedom becomes unstable

at Pc = 1.425 and wk = 1.283, for y = 10. the lag degree of freedom

becomes unstable at Pc = .583 and wk = 1.295, and for y = 15. the lag

degree of freedom becomes unstable at Pc = 0.568 and wk = 1.294.

Hingeless helicopter blades are usually designed with a first rotating

flap frequency of 1.1 < w < 1.2. Thus the value of aFl = 1.175 used in
- Fl - F1

the numerical calculations can be considered to a representative value

for this parameter. On the other hand the rotating lag frequency for

hingeless blades has usually a considerable variation, therefore it is

reasonable to investigate the effect of changing this parameter over a

wide range such as 0.2 < wL1 l 2.5, the results are presented in Fig. 15.

For the sake of completeness two sets of results are presented, those

with the assumed mode shapes and those with the exact rotating mode

shapes and the elastic coupling effect.

Two types of instabilities are shown in Fig. 15: (a) Those for

which the imaginary part of the characteristic frequency is equal to 0,

1/2 or 1 indicating that the instability is directly due to the periodic

coefficients in the system, for these points the appropriate number

appears inside the circles or squares indicating the flutter points and
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(b) Those for which Wk has a continuous value, usually close to the

rotating lag frequency, marked by letters A, B, C etc.

As can be seen from Fig. 15 there are two regions where degradation

of stability can be expected with forward flight. One region is between

0.9 < W < 1.6, while a second and much smaller region is between

0.45 < wL1 < 0.55. The detrimental effect of forward flight for this

region has been predicted also from purely mathematical considerations

(Ref. 9).

The results presented in Fig. 15 seem to indicate that at high

advance ratios a soft inplane hingeless blade with 0.7 < wL1 < .8 will be

the most stable; while for a stiff inplane hingeless blade a lag frequency

of WL1 > 1.6 would be the best.

Finally, it should be noted that, although the points in Fig. 15

have been connected by lines, a possibility exists that additional flutter

points which could be evaluated between the calculated points may not be

exactly on the lines as drawn, this is due to the periodicity of the coef-

ficients in the equations of motion.

Previous studies have indicated that droop and preconing can

significantly affect the value of 0c at which the linear system becomes

unstable in hover. It was reasonable therefore to investigate how these

parameters effect the stability of the blade in forward flight.

The results for the typical case are shown in Fig. 16, for this

particular combination of flap and lag frequencies pc is relatively

insensitive to variations in p, while negative angles of droop seem

to be stabilizing and positive angles of droop seem to be quite

destabilizing.
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The effect of the same parameters on a case with a rotating lag

frequency close to wL1 = 1.0 is shown in Fig.- 17. In this case both

droop and preconing are strongly destabilizing. Thus it is clear that

the effect of these parameters is strongly related to the combination of

rotating flap and lag frequencies for the particular blade configuration.
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SECTION 5

CONCLUSIONS

The most important conclusions which can be drawn from this study

are summarized below:

(1) Hsu's method for calculating the Floquet transition matrix at the

end of a period is a powerful computational scheme which represents

a significant improvement over previous methods. Compared to direct

numerical integration, Hsu's method was approximately 2.5 times

faster for a system of four first order equations. For higher order

systems, it probably could be more efficient by one order of

magnitude.

(2) Flapping instability and response studies at high advance ratios can

be inaccurate and misleading due to the neglect of the lead-lag

degree of freedom. The effect of the periodic coefficients on the

coupled flap-lag system shows that, in general, instability can

occur at lower values of advance ratios than when the flap degree of

freedom is considered by itself.

(3) In addition to the instabilities associated with the periodic

coefficients (i.e. with frequencies of 0, 1/2 or 1), the coupled

flap-lag system has the tendency to become unstable due to an aero-

dynamic coupling effect associated with the radial flow terms. This

instability, which has a frequency close to the rotating lag frequency

of the system, usually occurs at values of pc much lower than those

for which the flapping degree of freedom becomes unstable.

(4) The effect of the reversed flow region is negligible for V < 0.4, but

it becomes quite important for p > 0.8. The approximation of the

reversed flow region, outlined in Appendix D, seems to be acceptable.

The approximation is better for high advance ratios.
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(5) Viscous type of structural damping in the lead-lag degree of freedom

has a strong stabilizing effect on the instability due to the aerody-

namic coupling effect associated with the radial flow terms.

(6) The value of the collective pitch setting has a considerable effect

on the value of the advance ratio at which instabilities due to the

periodic coefficients or the radial flow aerodynamic coupling terms

occur. An increase in collective pitch is destabilizing, therefore

high advance ratio studies which do not include this effect

(nonlifting rotors) may yield unconservative results.

(7) The blade Lock number has a destabilizing effect on flap-lag

instability due to aerodynamic coupling effect associated with

radial flow terms.

(8) The results obtained seem to indicate that certain values of rotating

lag frequencies can provide improved aeroelastic performance for

hingeless blades at high advance ratios.

(9) Droop and preconing can significantly affect blade stability in

forward flight. The effect of these parameters is dependent upon

the particular flap and lag frequencies of the blade configuration

being considered.
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APPENDIX A

ORTHOGONALITY CONDITIONS

The orthogonality condition for a rotating beam vibrating out of its

plane of rotation is obtained from Friedmann (Ref. 13). with e = 0
1 1

(EI) r dx 3+ m(x )dx d = 0 (A.1)

for i # k and

1 1 11

(EI) (T )2 2 + ( m(x1+el)dx1  dxo
ooo 

J o

3 2 1 (A.2)

S .m dx for i = k
Q2 0 1 o

The orthogonality condition for a rotating beam vibrating in its plane

of rotation is

1 1 1

2f (EI)z y dxo +3 Ym m(x+el)dxl dxo
So

1 (A. 3)
- mi ym dx = 0

0

for i # m and

1 1 1
1 (EI)z 2 +3 2 x +el)dxo

o 0x
o

3 1 3 1 (A.4)
k ,2 dx

o 2 o o

when i = m

These relations determine mFi" 'Li'

vrAO VC, 61



APPENDIX B

COEFFICIENTS ASSOCIATED WITH GENERALIZED MASSES,

DAMPING AND AERODYNAMIC LOADING

The non-dimensionalized general masses are

1
3 f -2I J cmx dx

b o 0

=-3 d 2° ' '
Pikm k f i dk  m xl dx1  d b0x

o

MFi = n dx/Ib

1

=3 m Yi dx b

uCi 3 y di b

0

1 1

0 XP

i = £3 1my r dx d

B = - [ (x+eldxJ dx(') o

1 dx

k- 3 m,(fyIy;d xoB = mx +edX dx°

im=N I b f li mYm dI dx
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b3  o

'3 1
Bim i [ m Ym dxlo dx

11 I J- 0

b o x

B = xmYidX

0

1 1

O n 2 dx g

SFi f 2

1

fy2 dX gSL

to

11 SLi -

OT 9 I, Mi -b ~Li "LLI

Listed below are the coefficients associated with aerodynamic loads.

These integrals are evaluated between the lower limit A and the upper limit

b0

B where A and B are the tip loss factors. The calculation of the aerodynamic

loads in the mixed or reversed flow regions is described in Appendix D.

i  n dx dx

S1 o

S l dxL f6

6114
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Fik = x kdxo L x k dixo

Fk i n dx L k Yi k dx
ik = x 1 k o L 8 k dx

ik = i k d L = i 1 n dXo
F9 d i0 d ,

ik = ni k d L Yi dx

F = dx L 13 i d
im 0 Im m

ik = 'k dxo Lik =  i k m dx

1 iIk mm dxo L k A dx
im = o iYm dxL = ik dx

F = i do ikm i k dXo

F = , n y dx L = y ndx

im - i km o im i m o dx

Fikm fni km do ikm i km d

23  f -20 fFikm ,= T' i Y dxoi Likai Dk Y£ dxo

F24  2 1  ft -im = nkTi m Ym 0ike =  i nk m dx0

222 '
Lm = ii ym dx 0

Likm i k m dxo
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APPENDIX C

GENERALIZED AERODYNAMIC LOADS AND ELEMENTS

OF THE COEFFICIENT MATRIX AND FORCING VECTOR

C.1 Generalized Aerodynamic Loads

In evaluating the generalized aerodynamic loading terms, one encounters

a considerable number of terms which are small and therefore negligible. In

order to neglect the appropriate terms, a rational ordering scheme is used

which enables one to neglect terms in a systematic manner. In this scheme

all the important parameters of the problem are assigned orders of magnitude

in terms of a typical displacement quantity eD thus:

Gk = 0(1) gk = O(:D) CDo/a = 0(ED2)

Ym = 0( 0() D )  x = 0(1)

k = 0() 0 ) ( = 0(1)

ym.= 0(l) h = 0( D)  sin = 0(1)

8p = O(ED) 0(E D ) cosO = 0(1)

8D = 0(ED) 0 = 0( D )

An order of magnitude analysis of the equations indicates that in

general terms up to and includi-hg 0(eD2) must be included in the linearized

flap equation, while for the lag equation some 0(ED3 ) terms have to be

retained. These higher order terms in the aerodynamic part of the flap and

lag equations will be marked by a Z and neglected.

The aerodynamic loading terms L and L are given by the expressions:z y

Lz  abp A R3B2 2 + 2xp sin 0 - 2xp cos Ym hm

-2x p D 0 -2x Ymhm + (l-cos 2)60-p 2 sin 2 Y hm 6

P-IECEDING PAGE BLANK NOT FILMED
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- n2 2 BD O2-2p sin K Ymhm + (1 2;)( Y hm hr
S2 h + 2 c h h + +

mmD m mR rr 2

+ 2-p D - Ymhm - x k gk - x - x cos (e+D)

, 2
- xp cos T kgk - sin nk k - p sinpA- T- sin 2 gn(8+OD)

2
-2- sin 2 )kgk + p cosymhm i k gk + p cos ymhm X

2 2

+ - (1+cos 2)Y mh(+D) + -- (l+cos 2 )Ymhm kk

+ 11 cos 0 Tkgk + p co D + - (1+cos D0(p+D)

+ IL (1+cOS 6T 9 ' + J2 0)D k k Ymhm kgk m  R mm cos(+6D

+ Ymhm kgk +R r r (C.2)

L - abpA R3 2  kgk x + kgk  sin - kgk i cosV Ym hm

A D k2 I ,

- R 2D 2kgk Ymhm + Xx + 11 sin - Ali cos Ymhm

RE
A- li E - A yh m + p cos (1p+D)x + sin 2(8a+)

m 22- *
- (1+cos 2 )( +BD)'h - - (1+ cos 2) - cos(~+ Rymhm

2 2
+ cos k x + sin 2 n-k k -!- (1+cos 2)nq , yh

2 k g k k 2 * *

- (1+cos 2e kD6- cos* Tk k hm - kg 2 - 2X kA-2! ( 4+9ok gk R2 knkgk gk R kgk

-2 j kgk cos(p+,D - RT kkg cos g -gA - 2 Apcos(P+6D
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-21p cos n k - ~
2  (1+cos 2 )(2p+BD) -1 (1+cos 21)( p+aD)Ik k

2 C
_ _ Do -2(l+cos 2)n k gk + D-- x + 2x p sin* - 2xp cost ym hm

-1+cos 2*)n 2 2 ht

D R hm 2 m r r

/ 2
2 / . (l+cos ) h yr hr

-+ 2( + 2 cos h sin + - (1m+ 2

mm D mm r r 2 D

+ 2p c D m h + Y r (C.3)

Where the terms in the lag equation underlined by_ are 0(CD3). Also,

terms in both equations associated with radial flow are underscored with

Using these equations and the definition of the flap and lag coefficients

given in Appendix B, the generalized aerodynamic forces are

AFi =  Fb z idx O 2 F 6 + F 2p e sin,

2 2 3 2
- Fi2 P cos (BP+D) + F i e(1-cos 29) - F, T sin 21(Bp+BD)

F-  6  7 12
- F2 A - F3 A sin, + F6k p cos, - Fik sin 2 gk

i ik ik 2

[ - sin*8 9 s - F 21 22 cosik R Fik sin gk F im 2 os+Fim cos

F2 2  2 sin F2 2  2 10
i 2 sin 2 + (P+BD) (l+cos 20 h + Fi 2 r

11 A 11 11 1  *
Sim 2 sin + Fim cos(+) + Fim him T im RJ m

F23  14: / 14+ Fikm3 - (1+cos 2 )gkhm + F k 11 cos gh

24 Z * 15 ( 2 *
+ Fikm  cos gRk h + Fikm gk hm (C.4)
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ALi =  - L i dxo L + Li (p + D)cosge
0(Ib. i rD 

_1 CDo 2 2 2 u2 12 C
+ L i 2p a siny - L A L 1- 1+cos 2 ) (Bp+BD) + L i  a- (1-cos 29)

2 2 2 a2

- L2 X 2p((p+BD)cos + Li XA sin + L. - (BP+ D)e sin 2

4 Do +L10 +11 o 2 11 2 2 )(l+cos 2
a + Lik cos + Lik sin 2 - ik+cos 2)

11 2 co7 e + L8 a 8 a
- Lik2 cosJik R +  ik sin - Lik 21i 1 cos(p+8 D

-8 2L gk +  L0 cos8 - L 2 2 p+D)(l+cos 29)

20 2 CDo 23 Do1  e- L - O sin 2 - L 2p cos - h + -L cos(p+im a im a m im lcos(pD R

13 £ CDo 14 £ CDo 13 1- L 1 3 2p sinV k CD o L 1 4 2 L CD ° -- L 1im R a im R a im R m

24 7 2 (l+os 2)gkh7 *- Lik£ 2T (1+cos 29) gkge - Likm (1+cos 2 kh - Lik 2 cos gkg

16 £ * 22 * 18 £2 *
-Likm  cos - 6 gk hm - Likm R cosg gk hm - LikRT gk g

19 /(j2 * 2
- Likm R e gk hm (C.5)

C.2 Elements of the A Matrix

The elements of the A matrix, which defines the equations of motion when

written as first order differential equations, are given below

A21 = 1; A22 = A23 = A24 = 0

A43 = 1; A4 1 = A42 = A44 = 0

70



A l= + 22 F F F P9 sin + 24 cosi h

1 1 - 2 -2

A2 -F1 + Fl E + F p cos - F 2 sin 2p

MF12 Fl23 2 o]

+ F2 3 P (l+cos 20)hl

21 - 2

13 M1 (P+11 2 11

+ F 1 cosi(Sp+ D) + F 11 X x cosO go

A = -- E - F212p_ coso + F22 cos - F 2 2 2 6 sin 2
14 C 2i

+ F22 2 (P+D)(l+cos 2 ) + F2 3 P- (1+cos 21)gj

S2- 2 8
A31- 2 o- 2(*+BD)B11 + RL7  L8  8 sin

MF1 P

8  k 8 k 1 7  o 22 o-L8 2 cos(p+D ) - L 2X L 2 p coso g - L ui dos6 hlR CDS RPR 1)R 11 2

A32= -- Ecs L10  cosO6 + LI  2 sin 232 c+ 2- R sin 2

- L1 1 12 (p+ D) (1+cos 2) - L 1 2X1 cos - L2 4 2 (1+cos 2) gl

-L22 2
L -- (l+cos 29)6h

1 0 -8A33 = - 2+SL1 h 2 - 2Y + 2 D B11L1 11 D

(A)2 1 3  c, z 13 £ cDo 14

2 . LI3 p cos(Sp D )  - L 2p snup R 2 - CD

1 3 x - L16 cos g
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A3  -2 - + 20 Ai cosO - L 0  (P+D) (1+cos 24)

C C 2
20 2 Do 23 Do 21 ')I

- a . - L . ... a 2 - ... j ijg1--- -- -- -- ----- - ---- ---

C.3 Elements of the f Vector

The elements of the f vector, which defines the forcing terms when the

equations of motion are written as first order differential equations, are

given below

f2 f4 = 0

f2 F 2 1 20e sin - cosP(fp+D) + F3 p2- (1-cos 29)

- -sin 2 (Sp+D) - F Ap sin + F 6  cos - 7 - sin 2 g

21 22 22 2+ F- 1 2pe cos' - F22  l_cos+ F22  sin 2

2 2 2 .T 2  0

- -- )(l+cos 2) h- + f (l+cos 2 ) g

12 2 22 2 CD
S-L2 ( P+ D) 2 (1+cos 2 ) + L2 2 CD (1+cos 29)+

- L11  2 (+D)(1+cos 29) - L1 2 cosj

+ [- L20 A cos - L2 0  p+D )(1+cos 2) - L - sin 24
----------- l- -----------------------

- L2 3 2 cosi- h + L2 4  (1+cos 29 g + - L21 (1+cos 24) glh
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APPENDIX D

REGION OF REVERSED FLOW

The circular region of reversed flow, which exists over the retreating

blade, is quite well known. In past treatments of reversed flow it has been

customary (Ref. 3) to define three separate regions: (a) normal flow, (b)

(b) reversed flow, (c) mixed flow, and evaluate the appropriate aerodynamic

expressions for each region. When this model is used together with a modal

representation of the blade, the evaluation of the generalized aerodynamic

expressions Fi, Li becomes quite cumbersome, and a more convenient procedure

had to be devised.

The approximate reversed flow model developed for the present study

consists of replacing the circular region by an approximate region which has

two straight boundaries and a circular one as shown in Fig. 2. The approxima-

tion is based on the assumption that the area contained in the circular region

must be equal to the area contained in the approximate region. Two separate

cases must be considered: (1) p < 1, (2) p > 1.

Case (1). For p < 1, the diameter of the circular sector is taken as i.

Simple geometric considerations show that the angle a is always a

constant given by

a = r/2 (D.1)

Case (2). For > i 1, simple geometric considerations show that

a = 7 - 2 sinl() + 2 sin-1 2  (D.2)

Thus for V < 1 the generalized aerodynamic loads in the mixed flow region

are calculated from

k,2 B 
AFi 2 I L ri. dx + f i dx (D.3)
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i 2 b L Yi dxo +  Ly Yi dx (D. 4)

while for u 2 1.0

A Fi [ 2 i dxAFi (D.5)

2

AL -- L yi dxo i (D.6)

These equations are based on the assumption that the lift curve slope in

the reversed flow region is equal to the negative value of the lift curve

slope in normal flow.
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APPENDIX E

ELASTIC COUPLING

The angle of collective pitch e is the source of the so called elastic

coupling effect in cantilevered rotor blades. This effect couples the bending

perpendicular to the hub plane with the bending parallel to the hub plane.

For convenient representation-of this effect, the elastic coupling terms in

Eq. (2.1) must be rewritten

(EI)y cos 2 +.(EI)z sin2 = (EI)y + (EI)z-(EI)y] sin28 (E.1)

(EI) sin 2 + (EI) cos 2 = (EI)z- (EI)z-(EI) sin (E.2)

Defining

Ecl = (EI)z-(EI)] sin28 (E.3)

Ec2 = (EI)z-(EI)y sine cose (E.4)

When applying Galerkin's method on the equations of motion, it is

convenient to define the following additional expressions

1

- I Ecl i  dx

ik 2 (E.5)

cs oE = (E.6)im 2i1
~?Ib

1

- Ecl Yi m dxo
S0
im 2 (E.7)

Ec2 Yi nk dx0
Ek s 2b (E.8)
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